oll No.

Total Pages: 03

BT-2/M-24 42033 SEMICONDUCTOR PHYSICS BS-115A

Time: Three Hours]

[Maximum Marks: 75

ote: Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

- 1. (a) Explain the terms: lattice translation vector, symmetry operations, basis, space lattice, unit cell, packing factor and crystal structure.
 - (b) Determine the atomic packing factor for sc, bcc and fcc.
- 2. (a) What are Miller indices? Obtain a relation between the interplanar spacing and cube edge. 7
 - (b) What do you mean by point defects in solids?

 Derive an expression for the concentration of Frankel defects.

Unit II

3. (a) What are limitations of old quantum theory?

Explain the wave particle dualism by giving examples.

- (b) Prove that the wave group associated with a moving particle travels with the same velocity as that of the particle.
- 4. (a) What is Heisenberg's uncertainty principle? Prove the existence of neutrons, protons and α-particle in the nucleus using uncertainty principle.
 - (b) Derive the time dependent Schrödinger wave equation and discuss the concept of stationary states, wave packet and the significance of wave function.

8

Unit III

- 5. (a) Derive an expression for electrical conductivity and thermal conductivity on the basis of classical theory of free electron.
 - (b) What is the density of states in metals? Derive an expression for the density of states and hence obtain Fermi energy of a metal.
- 6. (a) Discuss the Kronig-Penney model for the motion of an electron in a periodic potential.
 - (b) What is Hall effect? Explain how the measurement of Hall coefficient helps one to determine the mobility of electrons in the metal. Mention some of the applications of Hall effect.

L-42033

7. (a) Discuss the electrical conductivity in intrinsic semiconductors and show how it helps in determining the energy gap of an intrinsic material.

7

- (b) Derive an expression for carrier concentration in p-type semiconductors. What would be the position of Fermi level in the same?
- 8. (a) Explain the working of a *p-n* junction. Discuss the forward and reverse biasing along with its V-I characteristics.
 - (b) What are different types of Transistors? Discuss the Field Effect Transistors in detail.